Phosphate Test Solution \#2

Mars Fishcare North America, Inc.

SECTION 1 Identification

Product Identifier

Product name	Phosphate Test Solution \#2
Chemical Name	Not Applicable
Synonyms	Solution ID\# 3311
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use
Relevant identified uses Phosphate test solution for product 63L.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Mars Fishcare North America, Inc.
Address	50 E. Hamilton Street, Chalfont PA 18914 United States
Telephone	2158228181
Fax	2159971290
Website	Not Available
Email	Not Available
Emergency phone number	
Association / Organisation	ChemTel
Emergency telephone	
numbers	$1-800-255-3924$
Other emergency telephone numbers	ChemTel: 1-813-248-0585

Once connected and if the message is not in your preferred language then please dial 01
Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue $=$ Health Red $=$ Fire Yellow $=$ Reactivity White $=$ Special (Oxidizer or water reactive substances)

Label elements

Hazard pictogram(s)
Not Applicable

Signal word Warning

Hazard statement(s)

H320	Causes eye irritation.
H402	Harmful to aquatic life.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) General

P101	If medical advice is needed, have product container or label at hand.
P102	Keep out of reach of children.
P103	Read label before use.

Precautionary statement(s) Prevention

P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

```
P305+P351+P338
    P337+P313
```

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	\%[weight]	Name
$56-81-5$	>97	GLYCERINE 96\%
$7772-99-8$	<3	STANNOUS CHLORIDE SOLUTION

SECTION 4 First-aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: - Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation.
Inhalation	- If fumes, aerosols or combustion products are inhaled remove from contaminated area. - Other measures are usually unnecessary.
Ingestion	- Immediately give a glass of water. - First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Special protective equipment and precautions for fire-fighters

Fire Fighting	- Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	- Combustible. - Slight fire hazard when exposed to heat or flame. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) hydrogen chloride phosgene other pyrolysis products typical of burning organic material. May emit poisonous fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Slippery when spilt. - Remove all ignition sources. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb spill with sand, earth, inert material or vermiculite. - Wipe up. - Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Moderate hazard. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services.

[^0]
Precautions for safe handling

Safe handling	- Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - DO NOT allow clothing wet with material to stay in contact with skin
Other information	- Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	* Metal can or drum
	* Packaging as recommended by manufacturer.
Storage incompatl containers are clearly labelled and free from leaks.	
	* Avoid reaction with oxidising agents

(N)

0

X — Must not be stored together
0 - May be stored together with specific preventions

+ - May be stored together
Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

|| Occupational Exposure Limits (OEL)
| INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	GLYCERINE 96\%	Glycerin (mist)- Total dust	$15 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	GLYCERINE 96\%	Glycerin (mist)- Respirable fraction	$5 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	GLYCERINE 96\%	Glycerin (mist)	Not Available	Not Available	Not Available	See Appendix D
US OSHA Permissible Exposure Limits (PELs) Table Z-1	STANNOUS CHLORIDE SOLUTION	Tin, inorganic compounds (except oxides) (as Sn)	$2 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available

| Emergency Limits
 Ingredient | TEEL-1 | TEEL-2 | |
| :--- | :--- | :--- | :--- | :--- |
| GLYCERINE 96% | $45 \mathrm{mg} / \mathrm{m} 3$ | $180 \mathrm{mg} / \mathrm{m} 3$ | TEEL-3 |
| STANNOUS CHLORIDE
 SOLUTION | $9.6 \mathrm{mg} / \mathrm{m3}$ | $65 \mathrm{mg} / \mathrm{m} 3$ | $1,100 \mathrm{mg} / \mathrm{m} 3$ |

Ingredient	Original IDLH	Revised IDLH
GLYCERINE 96\%	Not Available	Not Available
STANNOUS CHLORIDE SOLUTION	$100 \mathrm{mg} / \mathrm{m3}$	Not Available

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
The basic types of engineering controls are:
Process controls which involve changing the way a job activity or process is done to reduce the risk.
Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	$0.25-0.5 \mathrm{~m} / \mathrm{s}(50-$
$100 \mathrm{f} / \mathrm{min})$	
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers,	$0.5-1 \mathrm{~m} / \mathrm{s}(100-$
welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	$200 \mathrm{f} / \mathrm{min})$.
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas	$1-2.5 \mathrm{~m} / \mathrm{s}(200-$
discharge (active generation into zone of rapid air motion)	$500 \mathrm{f} / \mathrm{min})$.
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	$2.5-10 \mathrm{~m} / \mathrm{s}(500-$

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of $1-2 \mathrm{~m} / \mathrm{s}(200-400 \mathrm{f} / \mathrm{min})$ for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

See Other protection below

- Overalls.
- P.V.C apron.

Other protection

- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Respiratory protection

Type AB-P Filter of sufficient capacity. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:2001, ANSI Z88 or national equivalent)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear colourless liquid with a mild odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	1.262
Odour	Not Available	Partition coefficient n octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature $\left({ }^{\circ} \mathrm{C}\right)$	Not Available
pH (as supplied)	Not Available	Decomposition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
Melting point / freezing point (${ }^{\circ} \mathrm{C}$)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (${ }^{\circ} \mathrm{C}$)	160 (CC) glycerol	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Available	Surface Tension (dyn/cm or mN / m)	Not Available
Lower Explosive Limit (\%)	0.9 glycerol	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Applicable	pH as a solution (1\%)	Not Available
Vapour density ($\mathbf{A i r}=1$)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	- Unstable in the presence of incompatible materials. - Product is considered stable. - Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual,
Ingestion
ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact
The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

* produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of tumours; when injected intraperitoneally in pregnant rats there was an increase in mammary tumours among the off-spring but similar studies in pregnant hamsters and rabbits showed no tumours in the off-spring
The National Toxicological Program conducted a 2-year study in rats given tricaprylin by gavage. The treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma but there were no acinar carcinomas.
Tricaprylin is not teratogenic to mice or rats but some reproductive effects were seen in rabbits. A low level of foetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with trioctanoin.
Trioctanoin was also used as a vehicle control in a sperm abnormality test. Ten male control mice received an intraperitoneal injection of 0.25 ml trioctanoin $0.05 \mathrm{~g} / \mathrm{kg}$ of benz[a]pyrene (known reproductive toxicant and mutagen) daily for 5 days and sperm from caudae epididymides analysed. Based on these studies there is no sufficient evidence to classify the trioctanoin as reproductive toxicant.
In the human body, high levels of triglycerides in the bloodstream have been linked to atherosclerosis, heart disease and stroke. However, the relative negative impact of raised levels of triglycerides compared to that of LDL:HDL ratios is as yet unknown. The risk can be partly accounted for by a strong inverse relationship between triglyceride level and HDL-cholesterol level. But the risk is also due to high triglyceride levels increasing the quantity of small, dense LDL particles

Phosphate Test Solution \#2	TOXICITY	IRRITATION
	Not Available	Not Available
GLYCERINE 96\%	TOXICITY	IRRITATION
	dermal (guinea pig) LD50: $58500 \mathrm{mg} / \mathrm{kg}^{[1]}$	Not Available
	Inhalation (Rat) LC50: $>5.85 \mathrm{mg} /{\mathrm{L} 4 h^{[1]}}$	
	Oral (Mouse) LD50; 4090 mg/kg ${ }^{[2]}$	
STANNOUS CHLORIDE SOLUTION	TOXICITY	IRRITATION
	Inhalation (Rat) LC50: $2 \mathrm{mg} / 14{ }^{\text {[1] }}$	Not Available
	Oral (Mouse) LD50; $250 \mathrm{mg} / \mathrm{kg}^{[2]}$	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

GLYCERINE 96\%

For glycerol:

Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of $4000 \mathrm{mg} / \mathrm{kg}$ bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser.
Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is $10,000 \mathrm{mg} / \mathrm{kg}$ bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is $165 \mathrm{mg} / \mathrm{m} 3$ and $662 \mathrm{mg} / \mathrm{m} 3$ for systemic effects.
Genotoxicity: Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage in vitro. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. In vivo, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a

GLYCERINE 96\% \& STANNOUS CHLORIDE solution
positive control, prevent any reliable conclusions to be drawn from the in vivo data. Overall, glycerol is not considered to possess genotoxic potential.
Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation. Reproductive and developmental toxicity: No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL $2000 \mathrm{mg} / \mathrm{kg}$ bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL $1180 \mathrm{mg} / \mathrm{kg}$ bw/day).
Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

\times	Carcinogenicity	\mathbf{X}
\times	Reproductivity	\mathbf{x}
\times	STOT - Single Exposure	\mathbf{X}
\mathbf{X}	STOT - Repeated Exposure	\mathbf{X}
	Aspiration Hazard	\mathbf{X}

Legend: $\quad \mathbf{x}$ - Data either not available or does not fill the criteria for classification \checkmark - Data available to make classification

SECTION 12 Ecological information

Toxicity

Phosphate Test Solution \#2	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
GLYCERINE 96\%	Endpoint	Test Duration (hr)	Species	Value	Source
	EC0(ECx)	24h	Crustacea	>500mg/l	1
	LC50	96h	Fish	>11mg/L	2
STANNOUS CHLORIDESOLUTION	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	$\begin{aligned} & 14- \\ & 30.4 \mathrm{mg} / \mathrm{l} \end{aligned}$	4
	EC50	72h	Algae or other aquatic plants	$0.2 \mathrm{mg} / \mathrm{l}$	2
	EC10(ECx)	96h	Algae or other aquatic plants	0.03mg/l	2
	LC50	96h	Fish	$>0.035 \mathrm{mg} / \mathrm{l}$	4
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
GLYCERINE 96\%	LOW	LOW

Bioaccumulative potential

Ingredient	
Bioaccumulation	
GLYCERINE 96\%	LOW $($ LogKOW $=-1.76)$

Mobility in soil
Ingredient Mobility

GLYCERINE 96\% HIGH (Log KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods	- Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible.		
Product / Packaging			
Otherwise:			
disposal		\quad	* If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to
:---			
store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.			

SECTION 14 Transport information

Labels Required

Marine Pollutant NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable
14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
GLYCERINE 96\%	Not Available
STANNOUS CHLORIDE SOLUTION	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
GLYCERINE 96\%	Not Available
STANNOUS CHLORIDE SOLUTION	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture
|| GLYCERINE 96\% is found on the following regulatory lists
US - Massachusetts - Right To Know Listed Chemicals
US DOE Temporary Emergency Exposure Limits (TEELs)
US NIOSH Recommended Exposure Limits (RELs)
US OSHA Permissible Exposure Limits (PELs) Table Z-1
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
STANNOUS CHLORIDE SOLUTION is found on the following regulatory lists
US - Massachusetts - Right To Know Listed Chemicals
US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
US DOE Temporary Emergency Exposure Limits (TEELs)
US OSHA Permissible Exposure Limits (PELs) Table Z-1
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Additional Regulatory Information

Not Applicable

Federal Regulations

Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	No	
Gas under pressure		
Explosive	No	
Self-heating	No	
Pyrophoric (Liquid or Solid)	No	
Pyrophoric Gas	No	
Corrosive to metal	No	
Oxidizer (Liquid, Solid or Gas)	No	
Organic Peroxide	No	
Self-reactive	No	
In contact with water emits flammable gas	No	
Combustible Dust	No	
Carcinogenicity	No	
Acute toxicity (any route of exposure)	No	
Reproductive toxicity	No	
Skin Corrosion or Irritation	No	
Respiratory or Skin Sensitization	No	
Serious eye damage or eye irritation	No	
Specific target organ toxicity (single or repeated exposure)	No	
Aspiration Hazard	No	
Germ cell mutagenicity	No	
Simple Asphyxiant	No	
Hazards Not Otherwise Classified	No	

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)
None Reported
US. EPCRA Section 313 Toxic Release Inventory (TRI) (40 CFR 372)
None Reported

Additional Federal Regulatory Information

Not Applicable

State Regulations

US. California Proposition 65
None Reported

Additional State Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Statu
Australia - AlIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (GLY
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZloC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes

National Inventory	Status
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

| Revision Date | $12 / 23 / 2022$ |
| ---: | :---: | :---: |
| Initial Date | $09 / 06 / 2005$ |

SDS Version Summary

Version	Date of Update	Sections Updated
7.1	$11 / 01 / 2019$	One-off system update. NOTE: This may or may not change the GHS classification
8.1	$12 / 23 / 2022$	Classification review due to GHS Revision change.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 95724700.

[^0]: Personal Protective Equipment advice is contained in Section 8 of the SDS.

